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1. Introduction 

ommunication among humans, primarily through natural language, 

remains an effective method for sharing information. Natural 

Language Processing (NLP), a branch of Artificial Intelligence 

(Khurana et al., 2022), plays a significant role in advancing language 

development, particularly in this digital age. However, a substantial portion 

of the global population, especially those in low-resource communities (like 

the majority of Africans), face difficulty accessing AI technologies. Afaan 

Oromo, a widely spoken Cushitic language in Ethiopia, is one such under-

resourced language (Walga, 2021). It is officially recognized as the working 

language of the Oromia regional state and has been proposed as one of the four 

C 
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working languages of the Ethiopian federal government. With a speaker population exceeding 40 

million, Afaan Oromo is the most widely spoken Cushitic language in Africa and has the highest 

number of native speakers in Ethiopia (Garoma, 2024). 

Despite its cultural significance and widespread use, the field of NLP for Afaan Oromo is significantly 

underdeveloped, which highlights the necessity of conducting this research. The lack of robust language 

processing tools hinders its potential in various domains, including education and technology. Factors 

such as the scarcity of annotated linguistic data, limited funding for linguistic research, and the absence 

of effective language tools all contribute to the language’s under-resourced status, affecting its 

preservation and development. Furthermore, variation in Afaan Oromo orthography, especially among 

non-native speakers, exacerbates these challenges. The lack of a next-word prediction system (Liu & 

Sun, 2023) leads to substantial semantic ambiguities. That is, a subtle difference in word choice can 

drastically alter the meaning of a sentence. For example, in Afaan Oromo, the correct use of “Gadaa” 

(system) versus “Gaddaa” (mourning) in the statement “Barnootni Keenya har’aa waa’ee sirna 

Gadaati.” meaning ‘Our lesson today is about the Gada system.’ and the statement “Barnootni Keenya 

har’aa waa’ee sirna Gaddaati.” meaning ‘Our lesson today is about the ritual of Mourning.’ highlights 

the potential for misinterpretation without appropriate language tools.  

Afaan Oromo uses ‘Qubee’ script, a Latin-based alphabet comprising 32 characters: five vowels (‘a’, 

‘e’, ‘i’, ‘o’, ‘u’), also known as dubbachiiftuu, and 27 consonants (including paired consonants (qubee 

dachaa) like ‘ch’, ‘dh’, ‘ny’, ‘sh’, ‘ts’, ‘ph’), also called dubbifamaa (Gemeda, 2023). Similar to 

English, Afaan Oromo distinguishes between uppercase and lowercase letters. Vowels function as 

independent sounds, and both short (sagalee gabaabaa, as in ‘nama’, meaning human) and long vowel 

(sagalee dheeraa, as in ‘diimaa’, meaning red) variations exist. Moreover, sentence boundaries (known 

as ‘hima’) in Afaan Oromo are typically indicated with punctuation like periods (.), question marks (?), 

and exclamation marks (!) indicating sentence ends, akin to English. Additionally, word segmentation 

(known as ‘jecha’) in Afaan Oromo, like many Latin-based languages, relies on spaces to separate 

words. The language also exhibits a rich morphological system comparable to other African and 

Ethiopian languages, adhering to a Subject-Object-Verb (SOV) order (Tesema & Tamirat, 2017), unlike 

the Subject-Verb-Object (SVO) structure of English. Adjective placement differs, with Afaan Oromo 

adjectives typically following nouns, whereas English adjectives usually precede them. For instance, 

 

Hence, this study aims to develop a next-sequence generation system to enhance the accuracy and 

clarity of Afaan Oromo texts by providing attention-driven word suggestions. Therefore, the primary 

goals of this study are to: 

• Conduct a thorough analysis of Afaan Oromo’s linguistic structure and morphology. 

• Develop a substantial corpus of Afaan Oromo text. 

• Design and implement a word sequence generation model for Afaan Oromo. 

• Evaluate the performance of the developed model using the collected dataset. 

Moreover, the research questions guiding this study are: 

• Can deep learning models be used for the next-word generation in Afaan Oromo? 

• How does the choice of the Deep Learning model impact the next-word generation 

performance? 

• How does the integration of attention mechanisms with Bidirectional LSTM networks 

improve the model’s ability to capture contextual dependencies in Afaan Oromo text? 
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2. Theoretical Framework 

Next-word generation is a fundamental task in NLP and has been extensively researched using various 

linguistic models. Language modeling, also known as linguistic modeling, started during the 1980s 

when the primary models of some importance were developed (Iqbal & Qureshi, 2020). These first 

models were designed for written text, and from that moment onward, the models have been modified 

and enhanced to incorporate spoken languages. Early methods relied on the use of n-gram models 

(Bickel et al., 2005), which predict the subsequent word based on the preceding n-1 words. These 

models, though simple and efficient, face challenges such as sparse data issues and the inability to 

capture long-range dependencies. Nowadays, language models are integral in accelerating communication 

between individuals and in human-computer interactions, including applications like smart keyboards, 

email response suggestions, auto-correction for spelling, and virtual assistants. 

 

Figure 1 

Accelerated Human-computer Interaction Use Case 

 

 

However, these applications face particular challenges when applied to languages such as Afaan 

Oromo, which has unique linguistic features that complicate the next-word generation. For example, 

Afaan Oromo’s Subject-Object-Verb (SOV) structure contrasts with the more commonly modeled 

Subject-Verb-Object (SVO) structure of languages like English. This difference significantly affects 

word order prediction and introduces ambiguity in the sequence of word predictions. Moreover, the 

language’s complex morphology, including rich inflectional and derivational processes, poses 

additional challenges for predicting the correct noun and verb forms. The interplay between these 

morphological features and word order adds layers of complexity that models must account for, making 

it harder for traditional models to predict the next word accurately. These challenges highlight the need 

for models that are specifically tailored to address the linguistic properties of morphologically rich 

languages like Afaan Oromo. 

Several studies have investigated next-word generation and sentence completion in various languages, 

applying different approaches. While traditional NLP models, such as n-gram and support vector 

machines (SVMs), have been utilized for next-word generation, they often struggle with limitations that 

deep learning approaches effectively address. N-gram models, for example, are limited by context 

window size and are unable to model long-range dependencies, while SVMs face difficulty in capturing 

the intricacies of under-resourced language. Hence, with the emergence of deep learning, RNNs have 

been utilized for next-word generation due to their capability to model sequential data. For instance, 

Patil et al. (2024) suggested that RNNs maintain a hidden state that captures information from previous 

time steps. Besides, the power of RNN for next-word prediction in Assamese phonetic transcription is 

also studied (Barman & Boruah, 2018). However, traditional RNNs still struggle to learn long-range 

dependencies due to issues like vanishing gradients. 

To overcome the limitations of these traditional RNNs, Long Short-Term Memory (LSTM) networks 

were introduced. As discussed by Ambulgekar et al. (2021), LSTM neural networks are used to predict 

the next word in a sequence, utilizing character-level prediction. They trained the model on a Nietzsche 

text corpus and showed a significant improvement over traditional n-gram approaches due to LSTM’s 

capacity to capture long-term dependencies. Despite attaining a moderate accuracy of ~56%, the study 

highlights the potential of LSTM for improving text prediction applications. Sumathy et al. (2023) 
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utilize LSTM models for subsequent word prediction using a corpus obtained through web scraping of 

Indonesian data, achieving an improved accuracy of 75% over 20 epochs. The study illustrates the 

superiority of LSTM models in handling sequential data and enhancing prediction accuracy compared 

to traditional RNNs and federated text models. Wangchuk et al. (2023) discuss the challenges of 

digitizing the Dzongkha language and propose a Bi-LSTM model for Dzongkha word prediction. The 

model achieved an accuracy of 73.89% with a loss of 1.0722. The study aims to reduce keystrokes and 

make Dzongkha typing quicker and more efficient to bridge the digital divide in Bhutan.  

The comparative analysis of BI-LSTM and LSTM was conducted in the works by Rathee and Yede 

(2023) and Sharma et al. (2019), utilizing the English-Hindi corpus as a dataset. From their analysis, 

they concluded that Bi-LSTM performed better than the basic LSTM, with accuracies of 81.07% and 

59.46%, respectively. The study by Ganai and Khursheed (2019) explores the application of RNN and 

LSTM models for predicting the next word in language modeling, highlighting their use in structured 

document retrieval. The authors propose a tree-based generative language model for ranking documents 

and parts, with well-defined language models at each node within the document hierarchy. The work 

also demonstrates the limitations of N-gram models and the advantages of RNNs in language modeling. 

The LSTM and GRU models predict disaster events on Twitter data, and comparing their performance 

with and without word embedding was explained (Bhuvaneswari et al., 2019). Accordingly, the 

Bidirectional GRU achieved higher accuracy in contrast with the other. Moreover, hybrid approaches 

have also been proposed in numerous studies. For instance, Hoque et al. (2023) leverage a GRU-based 

RNN combined with an N-gram language model (unigram, bigram, trigram, 4-gram, and 5-gram) on a 

Bangla dataset. The researchers focus on enhancing the accuracy and efficiency of language processing 

for Bangla, tackling challenges such as data sparsity and the complexity of the language. Their proposed 

model achieves significantly higher accuracy compared to previous approaches (81.22% - 99.78%). 

Additionally, the hybrid approach for document-level sentiment analysis is also proposed utilizing the 

CNN-BiLSTM model, achieving 90.66% accuracy (Rhanoui et al., 2019). They combine Convolutional 

and Bi-LSTM networks with Doc2Vec embeddings using a corpus dataset of 2003 French news articles 

(positive, neutral, negative). A hybrid model combining Trie, CNN, and LSTM for Bangla’s next 

sequence generation, addressing limitations posed by traditional N-gram models, is studied (Nobel et 

al., 2023). As a result, the model captures long-range dependencies and contextual patterns in the Bangla 

corpus, achieving promising results on a diverse dataset. The effectiveness of different word embedding 

techniques for next sequence prediction was investigated using a Bengali dataset (Islam et al., 2024). 

The authors compare LSTM models trained on word2vec (skip-gram and CBOW) and fast Text (skip-

gram and CBOW) embeddings against the n-gram models. Their results illustrate the superiority of 

LSTM-based models, with word2vec skip-gram achieving the highest accuracy (79.72% for N=1) while 

fast Text models performed slightly lower. The study highlights the importance of contextual 

understanding for accurate next-word generation in Bengali. 

Furthermore, recent studies have increasingly utilized context-aware mechanisms, such as attention 

mechanisms, to address the shortcomings of traditional machine-learning models. Attention 

mechanisms enhance the focus on essential features and handle complex data interactions. In the context 

of morphologically rich languages like Afaan Oromo, attention mechanisms are crucial as they allow 

the model to focus on key morphological features (such as prefixes or suffixes) that are central to 

understanding the word structure and meaning. For instance, Peng et al. (2021) introduced a Social 

Relational Attention LSTM (SRA-LSTM) model to capture social relationships between pedestrians in 

trajectory prediction. Later on, Tang et al. (2020) proposed an attention-based LSTM combined with 

genetic algorithms to analyze urban road traffic flow. The multi-head attention mechanisms to enhance 

multimodal future trajectory prediction are also examined (Kim et al., 2020). These attention 

mechanisms were also suggested as the optimal solution in textual data analysis (Ayetiran, 2022; Kumar 

et al., 2023; Le, 2020; Mao et al., 2022; Putelli et al., 2021). For example, Le (2020) introduced methods 

for sentiment analysis by utilizing a sentiment lexicon and a word embedding technique (Word2vec) 

with an attention mechanism. In this context, the attention mechanism aids the model in concentrating 

on important words based on their sentiment score, resulting in improved performance compared to 

other popular machine learning techniques.  
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Building on these advancements, our study proposes a synergistic approach that merges the 

Bidirectional LSTM model with attention mechanisms for Afaan Oromo’s next word generation, 

inspired by similar principles used in trajectory prediction and sentiment analysis. This attention-driven 

Bi-LSTM model effectively captures temporal sequences by processing information in both forward 

and backward directions (Bidirectional) while integrating attention mechanisms to emphasize 

significant features and enhance prediction accuracy. This approach aims to tackle the challenges of 

accurately predicting the next word in Afaan Oromo by capturing complex language patterns and 

contextual dependencies. With this approach, we enhance the accuracy of next-word generation and 

provide insights into the impact of various contextual factors on language generation, aligning with 

recent advancements in predictive modeling across different domains.  

3. Methodology 

3.1. Materials 

We have compiled a dataset of Afaan Oromo sentences from various sources such as broadcasting 

Media (BBC, FBC, OMN, OBN) of Afaan Oromo, Social Media such as Facebook and Twitter, 

Academic books, and Afaan Oromo bible texts. The final dataset is 2 MB of textual data and comprises 

510 pages, totaling 201,538 words, of which 20% are used to evaluate model performance. The sentence 

lengths within our dataset vary, with each sentence containing at least three words and no upper limit 

on the number of words. Table 1 provides a summary of our data sources. 

 

Table 1 

Sources of Our Dataset 

Source of Words Total Words Total Sentences 

Broadcasting media (BBC, FBC, OMN, OBN) of Afaan Oromo. 90,340 9,500 
Social Media (Facebook, Twitter) 32,055 2,400 
Afaan Oromo Academic Books 49,253 4,000 
Afaan Oromo bible books 29,890 2,000 

 

While these sources may introduce certain biases we addressed this during data preprocessing. All data 

was carefully structured and standardized. In cases where informal or inconsistent language was 

detected, we corrected sentences to ensure proper grammar and full sentence structures, thereby 

enhancing the uniformity and quality of the dataset for training. Furthermore, Figure 2 indicates a visual 

representation of the most common word pairs, enhancing our understanding of linguistic patterns 

relevant to the next word generation. 

 

Figure 2 

Treemap of Top 20 Bigrams in Our Dataset 
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 3.2. Procedures 

The procedure for developing the Attention-Driven Bi-LSTM model followed several critical steps. 

After the dataset was collected, we employed a series of Natural Language Processing (NLP) techniques 

to prepare the data for model training. This included tokenization, where text data was split into 

individual words or sub-words, and padding, which ensured that all sequences in the dataset had the 

same length for consistency in model input. For the next-word generation task, we created sequences 

of tokens, where the predictors were the sequence of words up to the target word. This approach 

provided the necessary format for training the model to predict the subsequent word given the context 

of previous words. The details of these preprocessing steps are outlined in Figure 3. 

 

Figure 3 

Architecture of Proposed Next-word Generation Model 

 

 

As shown in Figure 3, several models, including LSTM, Bi-LSTM, Attention-based LSTM, and 

Attention-based Bi-LSTM, were tested to determine the most effective model for our next-word 

generation task. Furthermore, to ensure diversity in our datasets, we incorporated data from varied 

dialects, demonstrating our work’s potential impact on the active use and preservation of Afaan Oromo, 

thereby enhancing digital communication efficiency and preserving the language in digital formats. 

3.2.1. LSTM Network 

LSTM is a special type of Recurrent Neural Network (RNN) designed to improve the issue of long-

term dependencies in sequential data processing (Saha & Senapati, 2020). Unlike standard RNNs that 

struggle with retaining information for extended periods, LSTMs are explicitly built to overcome this 

limitation. LSTMs achieve this by incorporating a “cell state” that acts as a conveyor belt, allowing 

relevant information to flow throughout the network without significant degradation. The network uses 

various gates (forget gate, input gate, output gate) to control the flow of information within the cell 

state, ensuring only pertinent data remains (Saha & Senapati, 2020). LSTM maintains a cell state Ct in 

the time interval t to consistently learn sequential relationships. At each time step, LSTM considers 

Ct−1, ht−1, and xt as input, and the input gate determines whether the preceding information (ht−1 and xt) 
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is passed to the cell state. If the forget gate ft is activated, the network will discard the previous memory 

cell Ct−1. The output gate Ot controls the output of the memory cell. The whole process of the LSTM 

unit is formulated as follows: 

𝑓𝑡 = 𝜎 (𝑊𝑓 ∗  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓                                    (1) 

𝑖𝑡 = 𝜎 (𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖                                    (2) 

𝐶̂𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝐶 ∗  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶                           (3) 

𝑜𝑡 = 𝜎 (𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜                                   (4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡                                                (5) 

ℎ𝑡 = 𝑜𝑡 ∗  𝑡𝑎𝑛ℎ(𝐶𝑡)                                                      (6) 

Where ht denotes the hidden state of the LSTM unit at the time step t, ∗ represents the element-wise 

multiplication operation, tanh is the hyperbolic tan function, and σ is the sigmoid activation function. 

Wv, bv (v ∈ {f, i, C, o}) are parameters to be learned.  

3.2.2. Bi-LSTM Network 

Bi-LSTM, or Bidirectional Long Short-Term Memory, is an extension of the LSTM architecture 

designed to improve the modeling of sequential data by processing information in both forward and 

backward directions, as in Figure 4. This bidirectional strategy enables the network to capture 

dependencies from both preceding and subsequent contexts, which is especially useful for 

comprehending the full context of a sequence. Hence, Bi-LSTMs are specifically designed to address 

the long-term dependency issue by leveraging two separate LSTM networks: one for processing the 

sequence in the forward direction and one for the reverse direction (Li et al., 2020). 

Forward LSTM: processes the input sequence from left to right (preceding contexts). 

𝑓𝑡 = 𝜎 (𝑊𝑓 ∗  [ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑓                                     (7) 

𝑖𝑡 = 𝜎 (𝑊𝑖 ∗ [ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑖                                      (8) 

𝐶̂𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝐶 ∗  [ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝐶                             (9) 

𝑜𝑡 = 𝜎 (𝑊𝑜 ∗  [ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑥𝑡] + 𝑏𝑜                                     (10) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡                                                (11) 

ℎ𝑡
⃗⃗  ⃗ = 𝑜𝑡 ∗  𝑡𝑎𝑛ℎ(𝐶𝑡)                                                       (12) 

Backward LSTM: processes the input sequence from right to left (subsequent contexts). 

𝑓𝑡́ = 𝜎 (𝑊𝑓
́ ∗  [ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥𝑡] + 𝑏𝑓́                                       (13) 

𝑖𝑡́ = 𝜎 (𝑊𝑖
́ ∗  [ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥𝑡] + 𝑏́𝑖                                        (14) 

𝐶̂𝑡
́ =  𝑡𝑎𝑛ℎ (𝑊𝐶

́ ∗  [ℎ𝑡+1
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥𝑡] + 𝑏𝐶́                              (15) 

𝑜́𝑡 = 𝜎 (𝑊𝑜
́ ∗  [ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑥𝑡] + 𝑏𝑜́                                      (16) 

𝐶𝑡
́ = 𝑓𝑡́ ∗ 𝐶𝑡+1 + 𝑖𝑡 ∗ 𝐶̂𝑡

́                                                  (17) 

ℎ́𝑡
⃖⃗ ⃗⃗ = 𝑜𝑡́ ∗  𝑡𝑎𝑛ℎ(𝐶́𝑡)                                                       (18) 
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Where  ℎ𝑡
⃗⃗  ⃗  and ℎ𝑡

⃖⃗ ⃗⃗  denote the hidden states of the forward and backward LSTM units at time step t, 

respectively. While * denotes the element-wise multiplication operation, tanh is the hyperbolic tangent 

function, and σ is the sigmoid activation function. W and b parameters are learned during training.  

Final Hidden State: The outputs of these two LSTMs are then combined to provide a comprehensive 

representation of the input sequence. That is, the final hidden state(ht) for a given time step t is the 

concatenation of the forward and backward hidden states: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗ , ℎ𝑡

⃖⃗ ⃗⃗ ]                                                                  (19) 

 

Figure 4 

Architecture of Bi-LSTM Network 

 

 

3.2.3. Attention-Based LSTM Network 

Attention-Based LSTM Network is an enhancement over Long Short-Term Memory (LSTM) 

integrating an attention mechanism to address the limitations of standard LSTMs (Li et al., 2020). 

Although LSTM networks excel at capturing sequential dependencies, they consider each element in 

the sequence equally. However, in many natural language processing tasks, including next-word 

generation, not all parts of the input sequence are equally significant for predicting the output. For 

instance, in the sentence “The quick brown fox jumps over the lazy dog,” the words “quick”, “brown”, 

and “fox” are more relevant for predicting the word “jumps” than the words “the” and “lazy.” So, the 

attention mechanisms handle this limitation by assigning weights to different parts of the input 

sequence, allowing the model to focus on the most important information (Ayetiran, 2022; Kumar et 

al., 2023; Le, 2020; Mao et al., 2022; Putelli et al., 2021). These weights are then used to compute a 

context vector, which is a weighted sum of the hidden states generated by the LSTM. Below are the 

steps involved in the attention mechanism. It uses the hidden state generated from the LSTM’s output 

as an input (Li et al., 2020). That is, 

The hidden state at time t, which is generated as LSTM layer output, is: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡  , ℎ𝑡−1)                                                           (20) 

Calculate the attention weight using the softmax function: 

𝑎𝑙𝑝ℎ𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑇
𝑎  ∗  tanh(𝑊𝑎 ∗ ℎ𝑡 + 𝑏𝑎))         (21) 

Compute the context vector (c) as a weighted sum of the hidden states: 

𝑐 = ∑(𝑎𝑙𝑝ℎ𝑎𝑡 ∗ ℎ𝑡)                                                            (22) 

Calculate the predicted probability distribution over the vocabulary using softmax. 

𝑦ℎ𝑎𝑡 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠 ∗ [ℎ𝑛 , 𝑐] + 𝑏𝑠)                                 (23) 
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Where ht is the hidden state at time step t, xt is the input word embedding at time step t, hn is the last 

hidden state of the LSTM, yhat is the predicted probability distribution over the vocabulary (Ws, bs, va, 

Wa, and ba) are learnable parameters. 

3.2.4. Attention-Based Bi-LSTM Network 

The Attention-Based Bi-LSTM Network enhances the traditional Bi-LSTM model by incorporating an 

attention mechanism to address the limitations of standard Bi-LSTMs (Chopannejad et al., 2024). 

Although Bi-LSTMs are effective at capturing sequential dependencies by processing sequences in both 

forward and backward directions, they treat all parts of the sequence with equal importance. In various 

natural language processing tasks, such as next-word generation, different parts of the input sequence 

contribute differently to the prediction. Attention-based mechanisms improve this by assigning varying 

weights to different parts of the input sequence, allowing the model to focus on the most relevant 

information. These weights are used to compute a context vector that combines information from both 

forward and backward hidden states generated by the Bi-LSTM.  

 

Figure 5 

Architecture of Attention-Driven Bi-LSTM Used in Our Proposed Approach 

 

 

Below are the steps involved in the attention mechanism within a Bi-LSTM framework: 

1. Bi-LSTM Hidden States: The hidden states from the forward LSTM and backward LSTM at 

time step t are: 

ℎ𝑡
⃗⃗  ⃗ = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑_𝐿𝑆𝑇𝑀(𝑥𝑡  , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                     (24) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝐿𝑆𝑇𝑀(𝑥𝑡  , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)                                   (25) 

2. Concatenate Hidden States: The combined hidden state at time step t is: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗ ;  ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗]                                                                     (26) 

3. Calculate Attention Weights: Compute the attention weights for each time step using the 

context vector approach. Here, va, Wa, and ba are learnable parameters: 

𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑇
𝑎  ∗  tanh(𝑊𝑎  ∗  ℎ𝑡  +  𝑏𝑎))                        (27) 

Bi-LSTM 

Layer 

Attention Layer 

 

 

Output Layer 

     Attention scores Attention weight      Context vectors 

Input Layer 
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4. Compute Context Vector: The context vector c is a weighted sum of the hidden states, taking 

into account the attention weights: 

𝑐 = ∑(𝑎𝑡  ∗  ℎ𝑡)

𝑡

                                                                 (28) 

5. Predict Probability Distribution: Finally, calculate the predicted probability distribution over 

the vocabulary using the context vector c and the concatenated hidden state: 

                            𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠  ∗  [ℎ𝑛 ;  𝑐] + 𝑏𝑠)                                  (29) 
Where Ws and bs are learnable parameters. 

 

Algorithm: Attention-Driven Bi-LSTM Model for Afaan Oromo Next Sequence Generation 

Start 

1. Input: Text data sequence 

2. Preprocess Data: 

Tokenization: Convert text to token indices. 

Padding: Pad sequences to uniform length. 

Create Predictors and Labels: 

Predictors = Padded_sequences[:, :-1] 

Labels = to_categorical(Padded_sequences[:, -1], num_classes=Totalwords) 

3. Build Model: 

Input Layer: Input(shape=(L-1,)) 

Embedding Layer: Embedding(Totalwords, 100) 

Bidirectional LSTM Layer: Bidirectional(LSTM(100, return_sequences=True)) 

Attention Mechanism: 

Query = LSTM(100, return_sequences=True),  

Key = LSTM(100, return_sequences=True),  

Value = LSTM(100, return_sequences=True) 

Attention Computation: Attention_output = Attention ([Query, Value]) 

Concatenation: Concatenate([Attention_output, LSTM_output]) 

Final LSTM Layer: LSTM(100) 

Dense Output Layer: Dense(Totalwords, activation='softmax') 

4. Compile Model: 

Loss Function: Categorical crossentropy 

Optimizer: Adam 

5. Train Model: 

Fit Model: model.fit(Predictors, Labels, epochs=#) 
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6. Save Model: 

Save: model.save('model_ABiLSTM.keras') 

End 

 

3.3. Activation Functions Used in the Proposed Model 

In Attention-Based Bi-LSTM networks designed for sequence generation tasks, such as next-word 

generation, the choice of activation functions is crucial for optimizing model performance, particularly 

in low-resource languages. In this work, I have utilized the sigmoid function and the softmax functions 

at different stages of the network, each serving distinct purposes integral to the model’s performance. 

3.3.1. Sigmoid Activation in LSTM Units 

In the Bi-LSTM architecture, the LSTM units utilize gating mechanisms using forget gate, input gate, 

and output gate to control the flow of information across sequences (Chopannejad et al., 2024). Each of 

these gates relies on the sigmoid activation function (Lv et al., 2019). The sigmoid function’s ability to 

produce outputs between 0 and 1 allows these gates to effectively regulate the retention, discarding, and 

passing of information, which is essential for capturing long-range dependencies and maintaining 

gradient stability during training. This functionality is particularly beneficial in low-resource languages 

like Afaan Oromo, where limited data may make it challenging to learn complex sequential patterns. 

3.3.2. Softmax Activation in the Output Layer 

In our next word generation task, we also utilized the softmax function in the final layer of the model 

to transform the raw network predictions into a normalized probability distribution over the vocabulary 

(Yamashita et al., 2018). This enables the model to output a probabilistic prediction for each potential 

next word, facilitating accurate multi-class classification and making the predictions more interpretable. 

For low-resource languages, where data scarcity can exacerbate difficulties in learning and predicting, 

these activation functions contribute significantly to the effectiveness of models by enabling them to 

handle sparse data more robustly and provide reliable predictions despite limited training examples. 

That is, given a vector of raw scores [z1, z2. . . zn], the softmax function computes the probability for 

each class i as: 

           𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖)  =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

                                          (30) 

Where softmax(yi) is the probability of the ith word being the next word in the sequence), zi represents 

the raw score for class i, and e is the base of the natural logarithm, used here to exponentiation of the 

raw scores, ensuring that all probabilities are positive. The denominator,
𝒆𝒛𝒊

∑ 𝒆
𝒛𝒋𝒌

𝒋=1

, is the sum of 

exponentiated raw scores for all possible classes j. This normalization step ensures that the sum of all 

probabilities across the vocabulary equals 1. 

4. Results 

4.1. Experimental Setup 

All experiments detailed in this paper are carried out on a standardized computer setup featuring a 64-

bit Ubuntu 22.04.4 LTS Operating System, an Intel® Core™ i7 CPU, and 32GB of memory. The 

experiments are run within a Python 3.7 environment. In addition to the hardware and software 

specifications, below is the list of hyperparameters utilized in our model configurations. 
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Table 2 

Hyperparameters Utilized in Our Selected Model Configurations 

No. Hyperparameter Value 

1.  Embedding Dimension 100 

2.  Bidirectional LSTM Units 100 (for each LSTM layer) 

3.  Number of Epochs 30 

4.  Batch Size 64 

5.  Loss Function Categorical Cross entropy 

6.  Optimizer | Learning Rate Adam Optimizer | 0.001 

7.  Dropout Rate  0.3   

8.  Total Unique Words 112,000 words 

 

4.2. Model Performance Evaluation 

In this study, we evaluated five neural network architectures, LSTM, Attention-LSTM, Bi-LSTM, 

Attention-Based Bi-LSTM, and RNN, on their ability to predict the next word in sequences of Afaan 

Oromo text. The performance metrics, including accuracy and loss, are summarized in Table 2 and 

discussed below. Among the five models, the Attention-based Bi-LSTM achieved the highest accuracy 

of 95.0% and the lowest loss of 0.27, demonstrating its superior ability to predict the next word with 

high precision and minimal error. The LSTM model followed with an accuracy of 94.0% and a loss of 

0.38, reflecting strong performance with a reliable balance between prediction accuracy and error 

minimization.  

 

Table 3 

Summary of the Performance Results of Each Model 

Metrics LSTM Attention - LSTM Bi-LSTM Attention Bi-LSTM RNN 
Accuracy 0.94 0.88 0.90 0.95 0.90 
Loss 0.38 0.91 0.84 0.27 0.53 

 

The Bi-LSTM model recorded an accuracy of 90.0% and a loss of 0.84, showing improved context 

understanding over simpler models but falling short of the top-performing models. The RNN model 

also achieved an accuracy of 90.0% but with a higher loss of 0.53, indicating moderate performance 

with less effectiveness in error reduction compared to more advanced architectures. The Attention-

based LSTM model, despite using attention mechanisms, had the lowest accuracy at 88.0% and the 

highest loss at 0.91, suggesting that its attention mechanisms did not significantly enhance performance 

in this context without further improvements. 

4.3. Impacts of the Model Type and Training Epochs  

To evaluate model types and training epochs’ impact on the performance, we have compared five 

different neural network architectures: LSTM, Attention-LSTM, Bi-LSTM, Attention-Based Bi-LSTM, 

and RNN. We analyzed their training accuracy and loss, precision, recall, and F1-score over a range of 

epochs (5, 10, 5, 20, 25, and 30). 

4.3.1. Training Accuracy 

The training accuracy, shown in Figure 6, demonstrates how well each model learns over increasing 

epochs. The LSTM model starts with a low accuracy but improves significantly, reaching an accuracy 

of 94.2% by epoch 30. The Attention-LSTM model also shows substantial improvement, achieving an 

accuracy of 88.4% by the final epoch, though it lags behind LSTM. The Bi-LSTM model shows an 

initial accuracy similar to the LSTM but eventually reaches a plateau at 90.0% accuracy. The Attention-

Based Bi-LSTM model, however, exhibits the highest accuracy, peaking at 95.0% by epoch 30. The 

RNN model, despite showing improvements, achieves an accuracy of 90.2%, which is lower than that 

of the Attention-Based Bi-LSTM. 
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Figure 6  

Performance of Each Model in Terms of Accuracy vs Epoch  

 

4.3.2. Training Loss 

The training loss curves, illustrated in Figure 7, reveal the convergence characteristics of each model. 

The LSTM model shows a steady decline in loss, reaching 0.3584 by epoch 30, indicating effective 

learning. In comparison, the Attention-LSTM model experiences a slower reduction in loss, ending at 

0.9181. The Bi-LSTM model exhibits a more rapid decline in loss compared to LSTM, reaching 0.8402. 

The Attention-Based Bi-LSTM achieves the lowest final loss of 0.2709, reflecting its superior 

performance in minimizing error during training. Conversely, the RNN model shows a significant 

reduction in loss, ending at 0.5275, but still higher than the other models. 

 

Figure 7 

Performance of Each Model in Terms of Loss vs Epoch  

 

 

In addition to accuracy and loss metrics, the performance of each model is assessed using precision, 

recall, and F1-score to evaluate the predictive power in the Afaan Oromo language, as shown in Figure 

8. The effectiveness of the attention-driven Bi-LSTM network in predicting the next word stems from 

its unique ability to employ attention mechanisms, which dynamically assess the importance of different 

parts of the input sequence during prediction. The results demonstrate that the Attention-Bi-LSTM 

model achieved the highest performance in precision (0.9729), recall (0.9500), and F1-score (0.9613), 



Attention-Driven Bidirectional LSTM Neural Network for Afaan Oromo Next Word Generation  

 

 

Page | 14 

significantly outperforming the other models. This indicates that the attention mechanism plays a crucial 

role in improving prediction accuracy by enabling the model to focus on relevant context, addressing 

the limitations of traditional models that treat all input sequences equally without accounting for varying 

importance. 

 

Figure 8 

Performance Comparison of Precision, Recall and F1-Score 

 

Moreover, the attention-driven Bi-LSTM effectively captures long-range dependencies and enhances 

the handling of linguistic features in Afaan Oromo. Its performance metrics indicate strong performance 

in managing complex word formations and structural variations, as reflected in high F1 scores. Overall, 

the Attention-Based Bi-LSTM emerges as the most effective approach for next-word generation, 

emphasizing the importance of advanced neural network architectures for languages with complex 

structures. Given the significance of Afaan Oromo as the most widely spoken Cushitic language, 

improving language processing tools is crucial. Additionally, Figure 9 provides a comprehensive 

overview of the model’s learning process, showing that the accuracy of the Attention-Driven Bi-LSTM 

improves with increasing epochs while training loss decreases over the same period.  

 

Figure 9 

Attention-driven Bi-LSTM Performance  
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5. Discussion 

In this study, we tested the performance of five distinct neural network architectures: LSTM, Attention-

LSTM, Bi-LSTM, Attention-Based Bi-LSTM, and RNN for next-word generation in Afaan Oromo text 

sequences. Out of these models, the Attention-Based Bi-LSTM had the best performance, achieving the 

highest accuracy of 95.0% and the lowest loss of 0.27. This performance supports the findings 

ofAmbulgekar et al. (2021) and indicates the model’s ability to handle the linguistic complexities found 

in Afaan Oromo, such as its rich morphology, diverse word forms, and unique sentence structure. The 

attention mechanism leveraged in this model enabled it to focus on key contextual features, while the 

bidirectional feature facilitated a deeper understanding of the sequential relationships within the text. 

In contrast, the LSTM model, which also performed strongly, achieved an accuracy of 94.0% and a loss 

of 0.38. This indicates that while the LSTM offers a reliable balance between prediction accuracy and 

error minimization, it is slightly less capable of capturing the intricate contextual dependencies like 

morphology that the Attention-Based Bi-LSTM excels at. 

The other models, Bi-LSTM and RNN, both achieved an accuracy of 90.0% and similar loss values, 

indicating a more modest performance compared to the Attention-Based Bi-LSTM models. However, 

Sharma et al. (2019) found Bi-LSTM achieved an accuracy of 81.07%, showcasing our results signify 

a considerable advancement. These results reflect the trade-offs between model complexity and 

performance, with Bi-LSTM offering an improvement over the simpler LSTM model but still lagging 

behind the more advanced attention-driven architectures. The RNN model also demonstrated a similar 

performance but struggled to keep up with the advanced capabilities of models that incorporate attention 

mechanisms. The Attention-based LSTM model, despite its use of an attention mechanism, showed the 

weakest accuracy at 88.0% and the highest loss at 0.91. This indicates that while attention mechanisms 

have the potential to improve performance, their integration in this model was not fully optimized, 

showing the need for further refinement to better improve the power of attention mechanisms in future 

iterations. 

Moreover, the findings of this study underscore the significant impact that advanced neural network 

architectures, particularly Attention-Based Bi-LSTM models, can have on next-word generation and 

prediction, especially for languages with complex structures like Afaan Oromo. This impact aligns with 

findings from Wangchuk et al. (2023) and Sumathy et al. (2023), highlighting the effectiveness of 

advanced models in managing the linguistic intricacies of Afaan Oromo and the challenges that simpler 

frameworks struggle to address. By leveraging attention mechanisms, the Attention-Based Bi-LSTM 

excels in capturing long-range dependencies, including morphological structures, syntactic patterns, 

and contextual information that is crucial for accurate predictions. The results of this study indicate that 

these advanced architectures offer substantial improvements over simpler models, establishing them as 

highly effective tools for natural language processing tasks in languages with similarly complex 

grammatical features. This performance highlights the potential of attention-driven models to make 

significant contributions to enhancing the quality and accuracy of text prediction systems in such 

languages. 

In future work, there are several promising approaches to further improve model performance and, 

hence, increase the generalizability of the findings. One key approach is leveraging attention 

mechanisms within the models by exploring more sophisticated hybrid models that combine the 

strengths of different architectures. Such hybrid models could further improve prediction accuracy by 

utilizing additional layers for contextual understanding and by integrating more diverse data 

representations, as seen in (Hoque et al., 2023). Additionally, validating these findings on larger and 

more diverse datasets will not only improve the robustness of the model but also ensure its effectiveness 

across different domains and real-world applications. Although the dataset of 201,538 words used in 

this study is relatively small for training deep models, this limitation may lead to challenges like 

overfitting and poor generalization. Future work could address this by employing data augmentation 

techniques such as paraphrasing or noise injection. Transfer learning could also be considered, using 

pre-trained models from other languages or multilingual models to mitigate the impact of the small 

dataset. However, transfer learning was not applied in this study due to the lack of pre-trained models 

for Afaan Oromo. Addressing semantic ambiguities in Afaan Oromo, such as subtle variations in word 
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forms (e.g., “Gadaa” versus “Gaddaa”), is another key area that needs further investigation. Tackling 

these challenges could lead to even greater accuracy and clarity in next-word generation systems, 

particularly in languages where small changes in wording can profoundly impact or alter the meaning.  
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